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field strength and rotating field is indicated in Fig. 4. 
I t should be pointed out that the width of a single 

coil resonance depends quite strongly on the form of the 
deflectability factor f(Amj/J), particularly for small 
Amj/J} since this determines the contribution made by 
small rotations such as are obtained far from resonance. 
This factor in turn depends greatly on the slit arrange­
ment. For instance, if there is a finite source slit and the 
detector slit is wide enough to just include the base of 
the resulting trapezoidal beam intensity cross section, 
the factor goes as (Amj/J)2 rather than as (Antj/J) for 
small Amj/J. This would give a narrower line than is 
indicated by the calculation here. 

VII. COMPARISON WITH EXPERIMENT 

The computer program has also been used to calcu­
late the line shape corresponding to the conditions of 
an experimental line observed for the molecule OCS. 
This molecule is well suited for the purpose for several 
reasons; it consists of atoms whose nuclei are all spin-
less, so that there are no internal interactions to split 
the rotational magnetic-moment line; its relatively high 
moment of inertia means that at room temperature the 
most probable angular momentum / is 22, so that the 
classical limit should be applicable; and its easy handl­
ing and the occurrence of its mass at a low background 

I. INTRODUCTION 

THEORETICAL work on the interaction of intense 
radiation (intensity I> 105 W/cm2) with matter 

has recently received much stimulus with the advent 
of infrared and optical masers. Most detailed calcula­
tions have dealt with the radiation field in the classical 

* This paper presents the results of one phase of research carried 
out at the Jet Propulsion Laboratory, California Institute of 
Technology under Contract NAS7-100, sponsored by the National 
Aeronautics and Space Administration. 
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of the mass spectrometer means a strong, quiet beam 
signal could be obtained. Multiple slits2 were used to 
give high beam intensity for very narrow slitwidths. 
Experimental curves of the line shape were obtained for 
separated coils, both in phase and out of phase. These 
are shown in Fig. 5, together with the corresponding 
curves computed for the same conditions, including a 
deflectability factor chosen in accordance with the 
multiple slits. 

The agreement between the maxima and minima of 
the interference patterns is very good. The fact that the 
experimental curves drop to zero much faster off-
resonance than do the theoretical is probably due to the 
fringing field of the coil, so that the condition of non-
adiabaticity does not hold, and the component of 
angular momentum follows the field and does not 
change. Inhomogeneities of the field H0 are responsible 
for preventing the out-of-phase curve from dropping 
completely to zero at resonance. 

The general agreement of the theoretical calculation 
with experiment confirms the applicability of the 
classical treatment of the multiple quantum transitions. 
The results of Sec. I I offer a simple conception of the 
transition process which, for a full quantum mechanical 
treatment, would be extremely complicated. The fact 
that such transitions do occur makes possible the direct 
measurement of extremely small gyromagnetic ratios. 

approximation1; only a few approached the problem 
via quantum electrodynamics (QED).2 Obviously the 
application of QED to a multiphoton problem is 

1 See, for instance, K. Shimoda, T. C. Wang, and C. H. Townes, 
Phys. Rev. 102, 1308 (1956); D. Kleppner, H. M. Goldenberg 
and N. F. Ramsey, ibid. 126, 603 (1962); Yoh Han Pao, T. Opt 
Soc. Am. 52, 871 (1962). J F ' 

2Z. Fried, Phys. Letters 3, 349 (1963); L. S. Brown and T. W 
Kibble, Phys. Rev. 133, A705 (1964). See also H. Paul, Ann. 
Physik 11, 411 (1963); Z. Fried and J. H. Eberly, Bull. Am. 
Phys. Soc. 8, 615 (1963); M. Mizushima, Phys. Rev. 132, 951 
(1963). 
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In this paper a theory is developed which permits one to treat radiation processes involving a large number 
of photons in first- or second-order perturbation theory. The theory is applied to the interaction of an atomic 
electron with a very intense linearly polarized laser beam. It is found under certain approximations that 
induced radiation will occur at all harmonics ncoo of the fundamental laser frequency coo. The intensity 
distribution of this radiation is symmetric about the axis of polarization of the primary beam and is peaked 
at an angle of about 45° with respect to direction of propagation of the secondary radiation and the polariza­
tion of the incident radiation for the first few modes. This angle markedly shifts toward 0° for increasing n 
(higher harmonics). The transition probabilities are high enough to make the effect readily observable. 
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somewhat difficult since the QED is inherently geared to 
perturbation theory. A nonperturbative approximation 
is, of course, much more advisable. Recently, Fried2 

employed such a method, namely the well-known 
Bloch-Nordsieck method, for a calculation of Thomson 
scattering of intense radiation. But the method is 
unfortunately only applicable to free electrons. Here 
we propose an alternative approach which applies in 
principle also to bound states. This approach simply 
consists of considering j • A—(j • A) rather than j • A alone 
as a perturbation, j • A is of course the product of electron 
current and vector potential, the usual electron-photon 
interaction (we are using the Coulomb gauge), whereas 
(j 'A) is the expectation value of the interaction with 
respect to the photon variables alone. I t therefore is 
still an operator in the electron variables. If certain 
modes of radiation are occupied by a large number of 
photons, the expression j«A—(j-A) is significantly 
different for these modes from j«A alone, whereas for 
modes which are unoccupied the difference between the 
two types of interaction is insignificant, j • A is a pertur­
bation for a small number N of photons but ceases to be 
one if N increases, the expectation value being propor­
tional to y/N. On the other hand, j-A—(j*A) will 
always be a perturbation, the expectation value being 
zero. Subtracting from the interaction the expectation 
value (j • A) of course modifies the Hamiltonian. In order 
to remedy the situation we add this term to the interac­
tion-free Hamiltonian Ho and consider 210+(j 'A) as 
the new zero-order Hamiltonian with new modified 
eigenfunctions, etc., the starting point of a new pertur­
bation calculation. If the photon number is large enough 
to warrant a transition to the classical limit for expecta­
tion values, then the new zero-order Hamiltonian is 
just the Hamiltonian of an electron in a given external 
electromagnetic field, and the new eigenfunctions are 
those corresponding to such a situation. So far, we did 
not mention the term proportional to A2 in the non-
relativistic interaction Hamiltonian. Details will be 
given in Sec. III. Here it suffices to say that it will be 
treated completely analogously to the j • A term. 

In Sec. II we will give preliminaries: the representa­
tion of the radiation fields to be used, transition to 
classical fields, decomposition of a laser beam in terms 
of eigenfunctions of the free radiation field, etc. In 
Sec. I l l the interaction theory will be developed along 
the ideas outlined above. Finally, in Sec. IV the theory 
will be applied to the induced emission of radiation from 
electrons subjected to a very intense laser beam ( / > 1011 

W/cm2). The calculations are subject to certain approx­
imations which will also be discussed. 

II. PRELIMINARIES 

I t is convenient here and in the following to represent 
photons by their number and phase rather than by 
creation and destruction operators. For a photon of 
polarization a and propagation vector k the connection 

between these different sets of operators is3 

a« t(k) = n2Va(k)]1/V**«<k>, 

a«(k) = ««*«w[2Vr«(k)]1/2. (1) 

In a representation in which N is diagonal we have 

0«(k)=- i [d/a2V«(k)] . (2) 

The Hamiltonian of the free transverse radiation field 
is then given by 

ffi=*c£*2Vtt(k), (3) 

with eigenfunctions 

+x>=IL6(Ny(K)\Ny'(K)), (4) 
N 

where 5(N\N') is the Kronecker symbol and the func­
tion (4) is meant to be an infinite product over the 
countably infinite set of possible modes in the (large) 
quantization volume V. Obviously any wave function 
can be represented as a sum over the complete set (4): 

UNy{K))= Ef(AV(K))IIS(^(K)|iV(K)). (5) 
all iV' N 

The function <p is not necessarily a product of functions 
over all modes y, K as in Eq. (4). I t contains all the 
possible information about the radiation field. For 
instance, 

| f ( ^ ( K ) ) | 2 

is the probability to find Ny(K) photons of polarization 
7 and with propagation vector K, etc. Therefore, 

E | f ( iV 7 (K)) |*=l , (6) 
allJV 

is the proper normalization. Since the vector potential 
is given by 

A = ( E ^ ' V * 0 

\ V J «,k 

X{6*<k-^cJb«>a«(k)+ef-*(k'^-cfc«W(k)}, (7) 

where the &kia) are unit vectors of polarization, it is 
not difficult to find the expectation value of Eq. (7) 
with the help of Eqs. (1), (2), and (5): 

flirfic^2 

<r | A | r>=(— E &-i/v«){e^--^) 
\ V / «,k 
X E f(Ny(K)XNa(k)+iyi2UNy(K) 

allN 

+5ay8(K\k))+e-i<-*-<-«*» £ t*(Ny(K) 
alliV 

X ( A U k ) m ( 7 V T ( K ) - 5 „ , 5 ( K | k ) ) } . (8) 
3 W. Heitler, The Quantum Theory of Radiation (Clarendon 

Press, Oxford, England, 1957), 3rd ed., p. 65. 
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From 
E=-(l/c)(dA/dt), H = V X A , (9) 

expressions analogous to Eq. (8) may be obtained for 
the electric and magnetic fields. 

I t is often said that in order to be able to describe 
the electromagnetic fields classically the number of 
photons must be large. That this is not entirely true 
may readily be seen by taking the expectation value of 
the fields (9) with respect to the eigenfunction (4) of 
the Hamiltonian (3). No matter how large Nf is, the 
expectation value is exactly zero. However, if the number 
of photons is not only large but uncertain, so that 
instead of using Eq. (4) we have to use Eq. (5), it is 
easy to show that the expectation value of any operator 
or any product of operators of the radiation field behaves 
as a classical quantity. To amplify this statement let 
us suppose that the wave function (5) is centered about 
a large value N° for certain modes. In other words, 
f (N) is only appreciable for N in the neighborhood of N° 
and negligibly small for other values of N. Also, for 
those modes of the radiation field which are not 
occupied, the wave function f consists of a product of 
Kronecker symbols 8(N\ 0). In this case the expectation 
value (8) of the vector potential may be written: 

/2>wfic\ll2 

<r|A|f> = ( ) E ' ^ V ^ c o s C k - r - ^ ) 
\ V / «,k 

xElrWK))|j(ffa(k)y/». (io) 
alliV 

The prime indicates that the sum over the modes a, k 
runs only over those modes which are occupied. To 
obtain Eq. (10) we have put 

W ± l ) « f W , (11) 
the error becoming vanishingly small with increasing N°. 
From Eqs. (2) and (1) we also see that Eq. (11) is 
tantamount to assuming the operators a and a1" to be 
c numbers, for 

aa(k)UNy(K)) 

= exp{ - DVcWa(k)]} (Na (WWy (K)) 

= ( iV a (k )+ iy W 7 ( K ) + 5 7 a S ( K | k ) ) 

« ( t f „ ( k ) y W , ( K ) ) , (12) 

using Eq. (11). I t is also clear that the expectation 
value of a product of operators is equal to the product of 
the expectation values of the operators, provided that 
the approximation (11) holds. The expectation values of 
E and H are true classical fields. 

We are now in a position to construct the wave 
function of a laser beam. For simplicity we assume a 
monochromatic plane-polarized beam. Let the set of 
photon modes 7, K be ordered in some way: 

7i ,Ki; • • • 7i,Ky; • • • 7t ,K t ; 

Let the laser beam have a center frequency correspond­

ing to a wave vector K / = K and polarization e. We 
now put 

f(iV7(K))=«(iVT1(K1) |0). • . « ( ^ 7 y _ ( K ^ w ) | 0 ) 

XF(Ne(Kj+m^))8(N7j+m(Kj+m)\0)' • • , (13) 
where 

F(N)= (a/Try/* e x p { - (a/2)(N°-N)} , (14) 

with large N°. With the wave function (13) we then 
obtain for the electric field (the expectation value) 
taking the Eqs. (7) and (9) into account: 

< r | E | r > = - 2 ( ) E ' ^ ' V ^ i n C k - r - d f e * ) 
\ V / k 

X E . | ^ ( ^ ( k ) ) | 2 [ ^ ( k ) ] V 2 . (15) 
N 

Since Â ° in Eq. (14) is assumed to be very large, the 
sum over N in Eq. (15) is to a good approximation 
given by 

Z\F(N)\2N^2=(N0)^2. (16) 
N 

I t is now practical to go into the continuum, i.e., let 
the quantization volume go to infinity. In this case 
we have 

7 " 1 ! > ( 2 T T ) - 3 / W • • , (17a) 

AT7(K)- ,[(27r)VF]iV7(K). (17b) 

With Eqs. (17) and (16) we obtain for the electric field: 

Xsin(k^-ckt)lNe°(k)JiK (18) 

For future applications we wish Eq. (18) to represent 
a laser beam of frequency CCO=CK propagating into the 
Z direction of a space-fixed coordinate system with a 
polarization along the X_ axis (unit vector gx). In order 
to do so we choose for iV"0. 

NQ=nh^b2 exp{-b1(kz-K¥-b2(kx
2+ky

2)}. (19) 

The physical significance of the quantities h1/2 and b2
112 

is easily seen through evaluation of the integral (18) 
with the expression (19). For large values of Z>x and b2 

we have, again to a very good approximation: 

( f | E | f ) = - 2 ( 2 7 T f e o ^ r 1 ^ 2 - 1 ) 1 / V s i n ( K . r - c o o / ) 

Xexp (Z-ct)2 (x2+y2) . (20) 
I 2*i 2b2 J 

This expression represents a laser pulse moving with 
velocity c in the Z direction. Clearly the quantities Z>i1/2 

and Z>2
1/2 signify the spatial extensions of the electric 
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field, b2
112 in x and y direction, b±112 in Z direction. For 

our purpose it is sufficient to consider a continuous 
laser beam, since the processes we will investigate are of 
short duration and are confined to a small volume 
(atomic system). In this case we let bi and b2 go to 
infinity but such that the quantity nbc^br1 stays 
finite. Putting 

nbrll2b 2-1=in, (21) 

which is obviously the number density of photons,4 we 
have finally: 

<f | E | f) = - (47r^0n)1/29x sin {nZ-cat). (22) 

The steps which lead from the state vector (13) of the 
photon field to the final expression for the expectation 
value of the electric field (22) may of course be applied 
to any other quantity of interest. Specificially, we will 
do this in the next section for the interaction Hamil-
tonian of an electron with the electromagnetic field. 
Details of the calculation will however be omitted. The 
reader is referred to this section for details. 

III. DEVELOPMENT OF THE THEORY 

The total nonrelativistic Hamiltonian of an electron 
in a given potential coupled to the radiation field is 

H=HQ+H1+Hi, (23) 
with 

Ho=~(fi2/2m)V2+cf>(r), (24) 

the Hamiltonian of an electron in a given (attractive) 
potential, 

U i = f e E M y k ) , (25) 
a,k 

the Hamiltonian of the free radiation field and 

ieh/2irhc\112 

Ht^—l Z k-'i2
9k^'Ve^(aa(k)+aJ(-k)) 

mC\ V J «.k 

ve2hYr E (^0 1 / 2 9k ( a ) -9k ' w e^ k + k , ) - r 

mcV ctx /s,k' 

X [ a a ( k ) + a a t ( - k ) ] [ ^ ( k ' ) + ^ ( - k ' ) ] , (26) 

the interaction Hamiltonian. The creation and destruc­
tion operators for photons are represented by £see 
Eqs. (1) and (2)] 

a J (k) = ZNa(k)J» eXp{ - [d/diV^k)]} , (27a) 

aa(k) = exp{[a /^«(k ) ]} [^„ (k ) ] 1 / 2 . (27b) 

Let us assume that the atomic system (the electron) is 
subjected to an intense radiation field, the radiation 
field being represented by the state vector (13). We 
wish to separate a direct interaction with this radiation 
field, i.e., an interaction which does not change the 
number of photons, from an interaction which leads to 

4 The reason for the factor J in Eq. (21) is simply that the mean 
time averaged energy density (l/4x) (E2-\rH2) —fiu^fi. 

a change in the number of photons. The latter, although 
being modified by the presence of the high-intensity 
radiation field, may still be evaluated by perturbation 
theory. Let us therefore try the following ansatz for the 
wave function of the electron and radiation field: 

^=( r<« /* )^ f (^ 7 (K) )x ( r ,0 . (28) 

Here f is given by Eq. (13). Inserting Eq. (28) into the 
time-dependent Schrodinger equation with Hamiltonian 
(23) and taking the expectation value with respect to 
the photon variables yields an equation for x : 

t*(d /dOx(r ,0={^o+<f |Hi(0 | f>}x(r ,0 . (29) 

In the derivation of Eq. (29) we have used the rela­
tionship 

edtih)Hl expf ± V W*)ffi 
V dNa(k)J 

= eTickt exp( ± ] , (30) 

signifying that each term containing k«r in the interac­
tion Hamiltonian (26) is simply replaced by k«r— ckt. 
I t is clear from Eq. (29) that the electronic wave 
function x merely represents the electron being sub­
jected to a given time-dependent external field. 

We note here for later use that the expectation value 
of Hi(t) occurring in Eq. (29) with the expression (13) 
for the wave function of the photons in the approxima­
tion discussed in Sec. I I is given by 

e / 4 T T M \ 1 / 2 h d 

<r|H*(0lf>= ) COS(KZ-CO0*) 
m\ co0 / i dx 

2whe2n 
H cos2(/cZ-co0/). (31) 

Since the Hamiltonian of Eq. (29) is Hermitian it is 
clear that the solutions of Eq. (29) form a complete 
orthonormal set of wave functions Xn provided they 
were orthonormal at some initial time, which we assume 
to be the case henceforth. I t is this set of wave functions 
which represents that part of the electron-photon 
interaction which does not disturb the number of 
photons. Let us now turn to the part of the interaction 
which does alter the number of photons. Consider the 
total Hamiltonian: 

H=Ho+^\Hi(t)\^+H1+Hi~(^\Hi(t)\07 (32) 

which is of course identical to Eq. (23). But now we 
assume the last two terms on the right-hand side of 
Eq. (32) to be the perturbation. An expansion in terms 
of the eigenfunctions of Eq. (29) of the wave function 
yp for the complete system satisfying the time-dependent 
Schrodinger equation with the Hamiltonian (32) 
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leads to the following expression: 

^ = Z MNy(K), Ox„(r,0*-w»Hl. (33) 
n 

Imposing the initial condition 

fn(Ny(K)fi) = 8nnt(Ny(K)), (34) 

where f is given by Eq. (13), first-order time-dependent 
perturbation theory then yields in a straightforward 
manner5: 

fn(Ny(K), * ) = - - [ drfd*rXn*(r,T) 

X [ ^ ( r ) - < r | ^ ( r ) | f > ] 

XX^(r,r)f(7V7(K)). (35) 

I t is expression (35) which we will use in the next section 
to obtain induced emission probabilities for the system 
at hand. 

IV. AN APPLICATION 

Let us then apply Eq. (35) to a calculation of induced 
emission of radiation from an atomic electron. Phys­
ically we imagine that the laser beam is passing through 
a dilute gas. In this case we may ignore any correlations 
between different atoms either due to interactions 
among atoms or the coherence effects of the laser beam. 
We also imagine that due to the very high intensity of 
the incoming radiation all atoms are essentially ionized 
in a special way. To clarify this statement let us write 
down the Schrodinger equation for an outer electron of 
a given atom in the atomic field of force and the 
radiation field corresponding to Eq. (29) [using 
Eq. (31)]: 

h2 d 
V2+$(r)+i/k:G! COS(KZ—COOO— 

2m dx 

+%(mc2)a2 COS2(ACZ-O>OO [xn = ih(d/dt)Xn. (36) 

Here a is the dimensionless parameter 

a= (4jre2M/w2Aj0)1/2 (37) 

measuring the strength of the radiation interaction. We 
now assume that the atomic potential is separable, i.e., 

0(r) = *i(*)+*2(y,«) . (38) 

This approximation allows us to introduce two further 
approximations. First we can omit the z dependence in 
the cosine terms of Eq. (36) or, in other words, work in 
the dipole approximation, since the electron will stay 
bound in the y and z directions according to Eqs. (38) 
and (36). Second we may ignore the ^-dependent part 
of the atomic force field entire, assuming very strong 
incident radiation. I t is felt that the approximation 

5 D. Bohm, Quantum Theory (Prentice-Hall, Inc., Englewood 
Cliffs, New Jersey, 1951), p. 410. 

(38) is, under the circumstances (namely: extremely 
strong linearly-polarized radiation, therefore a strong 
Stark effect in the x direction, little effect in the y and 
z directions) not at all a bad one.6 Applying then the 
approximations outlined above to Eq. (36), it is not 
difficult to discover that the solution is given by 

Xn=tm{y,z)e-^E™(2ir)-*l2 expft/7,(*,*)], (39) 

where 

Ffat) = Ix- t((M2/2m)+ (mc2/4h)a2) 

+l(c/o)o)a sincoô — (mc2a2/Shooo) sin2ct>0/. (40) 

The wave function ^ m is defined by 

f h2 / d2 d2 \ } 
— + — ) + * 2 ( y , 2 ) * « = £ « * » , (41) 

I 2m\dy2 dZ2J J 

and the continuous wave function, exp(iFi), satisfies 

[ h2 d2 d mc2 | 
\ \-ihca coscoô  1 a2 cos2a)0t \ exp[z7^(x,/)] 
I 2m dx2 dx 2 J 

= ih(d/dt) expftFjOM)], (42) 

an equation describing a one-dimensional free electron 
in a given time-dependent electric field. We see that 
indeed the wave function (39) satisfies Eq. (36) taking 
the above-mentioned approximations into account. 

We are now in a position to work out the matrix 
element (35), since we know the wave functions Xn 

from Eqs. (39) and (40) and we also know the photon 
state vector from Eqs. (13) and (14). In order to be 
consistent we have to use the same procedure in 
calculating the matrix element (35) as the one used in 
obtaining the expectation value (22) for the electric 
field, a procedure which has been thoroughly discussed 
in Sec. I I . Proceeding then, we first notice that within 
the adopted approximations 

Jd*rXn{T,r)(£ | HM \ t)Xn. (r,r) = 0 , (43) 

provided that the quantum numbers of the initial state 
n'=m', V are different from n^m, I. This follows 
directly from the structure of the interaction term as 
given by the two last terms on the left-hand side of 
Eq. (42). Continuing with the evaluation of the matrix 
element (35) we specify the transition nr —> n to be one 
in which a photon with polarization /3 and propagation 
vector k is emitted, whereas the electron undergoes a 
transition from the state specified by7 nf^m, V to a 
state specified by n^m, I. Inserting then the appropriate 

6 Indeed under these circumstances the radiation field emerging 
from the sample will be that due to a harmonically oscillating free 
electron. We suspect that the quantum mechanical calculation 
will agree with a classical calculation as it is the case with Thomson 
scattering. Our result fJEq. (54) ] will show this to be in fact true. 

7 m is the collection of quantum numbers associated with the 
motion in the y and z directions CEq. (41)] and / is the (con­
tinuous) quantum number for the motion in x direction £Eq. (42)]. 

file:///-ihca
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FIG. 1. Intensity dis­
tribution of secondary-
radiation in arbitrary 
units. The angle $ is the 
angle between the direc­
tion of polarization of 
the incident laser beam 
and the direction of 
propagation of the in­
duced radiation. The 
distribution is shown for 
the first three harmonics 
and has been calculated 
with a value of a equal 
to one corresponding to 
a laser beam intensity of 
7 « 6 . lO1* WcnT2 and a 
value for the electron 
velocity v — 2.108 cm/sec. 

e 

wave functions (39) into the matrix element (35), leads to a 6(Na(k)\ 1) from the expression (13) for the 
performing the time integration, and selecting only the photon state, we obtain after some algebra for this 
relevant part of the matrix element, i.e., that part which amplitude A : 

e / 2 T T ^ \ 1 / 2 +00 / / W v 

A=— ( — «(/'-z-**)ek(»-eJE /»(a— 
mc\ V I n=~co \ K / 

xT,'(kkTllWp)-fr'i')\W-l-k*+kx') £ J 

l'-l\exp{iltuo0+ck+ (h/2m) ( / 2 - / ' 2 ) ]0 - 1 2we2 

f ( N ( K ) ) 
m»0+ck+ (h/2m) (/2-/ / 2) mcV 

r-l\exp{iln^+c(k-k,)+(h/2m)(l2-r2)']t}-l 

5,k' -(av) 
+«(/'-/-*,-*,') E /»(a ) 

nuo+c(k-k')+(h/2m)(P-r2) 

l'-l\ exp{ilno>0+c(k+k')+ (h/2m) ( / 2 - / ' 2 ) ]0 - 1 

nwo+c(k+k')+(h/2m)(P-l'i) 
lNs(k')J'*UNy(K)). (44) 

Although we do not wish to repeat here the algebraic steps which lead to Eq. (44), a few explanations are in order. 
The prime on the summation over 5 and k' means that only those modes are to be summed which are occupied by 
the laser beam, a is the dimensionless quantity denned in Eq. (37). k is the propagation vector of the emitted 
photon, &x of course its x component. The occurrence of the Bessel functions in expression (44) is due to the 
integration over time, since with wave functions of the type (39), (40) we encounter integrals of the type: 

/ 
J 0 

dr exp(ier+i8 sinco0r)=— i YL Jn(S)-
-1 

e+noio 
(45) 

a result which is readily verified using the generator function for Bessel functions exp£J(/—r 4)] . Finally K = COO/C. 
In order to find the transition probability per sec for the emission of a photon we have to take the absolute square 

of Eq. (44) and take the time derivative in the asymptotic limit /—•> co.8 I t is clear from Eq. (44) that by taking 
the square two kinds of terms will be encountered. First (in easily understood notation) terms of the following kind: 

a= 
exp{it(no)o+a+ck)} — 1 

na)Q-\-a-{-ck 

with the asymptotic limit for large times 

a—> (2Tr/c)td(k+c~1(a+no)o)), 

(46) 

(47) 
8 W. Heitler, Ref. 3, p. 139. 
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proport ional to t leading to a cons tant t ransi t ion probabi l i ty in a well-known manner . B u t there are also other 
te rms (cross terms) which are no t as simply behaved. T h e cross te rms 

B--
[exp{it(ncoo+a+ck)} — l X e x P ( —it(tno>o+a'+ck)} — 1] 

(nooo+a+ck) (nioio+a'+ck) 

are oscillatory even in the asymptotic limit t= <*>. Specificially we have in this limit: 

2w sint[(n—tn)uo+a—a''] 

f-complex conjugate, 

B-+-
(n—m)cx)o+a—af 

-[S(k+c-l{noiv+a))+b(k+c-l{m^+a))~]. 

(48) 

(49) 

T h e t ransi t ion probabi l i ty will therefore consist of two pa r t s : one pa r t which is constant or t ime-independent , and 
another p a r t which is oscillatory in t ime. Now, this t ime-dependent pa r t is so rapidly oscillating, as can be seen 
from expression (49), t h a t i t is unobservable, i ts t ime average being zero. We m a y therefore omit all cross t e rms in 
performing the absolute square of Eq . (44). Mult iplying also by the phase-space density of the photons , we obta in 
for the t ransi t ion probabi l i ty per solid angle and frequency interval dk: 

d\A\ 

dkdtt 47rwV 

e2hkl'2 +00 r (a \ n 2 / r 

4:Trm2c2 n=-ooL \K / J \ L 
_ ( / 2 _ / / 2 ) 

2m 

e2k 

4TT& 
-a2(p* ( /3) . 

9*) 

x8(r-i-kx)\ £ r^^^-c/'—o)i r"6^*+€?-ir(w—I)«0H—(/*—//2)"i)+«r 

1)1 + 2 £ /n(-(/,-0W2(-(/,-0)«(* + ̂ 1[(»+l)cO0 + -

n=-co \K / \K / 

(»+l> Wo 

+—(/2-/'2) 
2m 
e2al'k 

(p-n ) ! 

4wmc2 

\< 
X d[ k+c~ m,0+—(P-n 

2m H k+c-1 
h IV 1 

(«+l)a,o+—(P-ln) 
2m 

(50) 

T h e to ta l t ransi t ion probabi l i ty is found by summing over all final states. T o be sure, we should also t ake an average 
over the initial s ta tes of the electron. B u t first we do not know their distr ibution and second we will see t h a t 
the t ransi t ion probabili t ies are ra ther insensitive to it. Summing over I in Eq . (50) and introducing the angle 6 
between the direction of propagat ion of the emit ted pho ton and the x direction ( the direction of polarizat ion of the 
incident radiat ion) , the a rguments of the 5 functions become 

k+m+ (h/2mc)k2 c o s 2 0 - (h/mc)l'k cos0= 0 , (51a) 
or 

k+ (n±l)K+ (h/2mc)k2 c o s 2 0 - {h/mc)lfk cos0=O. (51b) 

T h e roots of these equat ions correspond to a frequency of the emit ted radiat ion co given b y 

mc2 [ / # c o s 2 0 \ 1 / 2 ] 
#co0, (52) 

( / ftcos26y/2l 

h cos201 

for no t too large V. W e see t h a t positive roots only occur for negative values of n, and the frequencies of t h e 
emi t ted radiat ion then are jus t the harmonics of the fundamenta l laser frequency oo0> Neglecting recoil and in t roduc­
ing the initial velocity v—hlf/tn of the electron, we finally find for the differential t ransi t ion probabi l i ty of emi t t ing 
a pho ton with frequency noo0 and polarization /3 from Eq . (50): 

d\Ap(nuo)\2 no)0 e
2 ( v2 v 

= ( p k w • 9x)2 — Un{naQ^l) • Qx)y+-ciJn(nagk
(1) • 9x)(J rn-i(wapk

( 1 ) ' Qx)+Jn+i(naek
(1) • QX)) 

dQ, 4TT he [ C2 C 

+ a 2 ( / n - i ( ^ 9 k ( 1 ) • 9x)+Jn+i(naQk
(1) • p*))2 (53) 
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a is given by Eq. (37); pk(1) is a unit vector in direc­
tion of propagation of the emitted light. 

Since the velocity of the electron v is according to 
Eq. (39) the average momentum divided by the mass 
and since the electron will be ejected from the atom 
with equal probability in either direction, we may omit 
the term linear in v in Eq. (53). Equation (53) then 
simplifies to : 

d\AR(nooo) I2 no)o e2 

= • (Pk^ • QxYlJn(naQ^ • 9x)J 
da 4TT he 

4 
X[ 

/v' 4 \ 

\ c 2 (ek«> -9xY/' 
(54) 

This expression agrees with that given by Brown and 
Kibble2 if magnetic interactions are omitted. I t also 
agrees with the classical result for the radiation field of a 
harmonically oscillating point charge as given by 
Jackson9 if v is put equal to zero. Since 

EG>kw-!>.)2 = sin20, (55) 

which vanishes for 0=0° and 180° and since the Bessel 
functions vanish when 6=90° or 270°, we see that the 
secondary radiation field for each harmonic consists 
of four lobes rotationally symmetric about the axis of 
polarization of the primary laser beam. We notice that 
the direction of maximum intensity shifts toward 0° 
(i.e., toward the direction of polarization of the primary 
laser beam) with increasing frequency. Using the 
asymptotic expression for Bessel functions with large 
index and large argument it is not difficult to discover 
that the intensity distribution of the nth harmonic 
becomes for a < 1: 

In" 
n sin20 

af^costf—acos20 
expj — 2n\ 

/i+(i-a2cos2ey 
log! 

L \ a cos# 

a cos# 
- + a cos0 (56) 

9 J. A. Jackson, Classical Electrodynamics (John Wiley & Sons, 
Inc., New York, 1962), p. 501. 

This valid for large n but of course not too large n, both 
because eventually the recoil cannot be neglected any 
more, and because the nonrelativistic calculation 
becomes invalid. In any case Eq. (56) shows that the 
intensity is sharply peaked at an angle 6= (na/2)~112 rad. 
For an infrared laser operating at coo= 1013 sec-1, n= 100 
means ultraviolet light. But for n= 100, expression (56) 
is perfectly valid, so that we expect two very sharp 
cones of ultraviolet radiation centered about the 
direction of polarization of the incident laser beam to 
emerge from our sample. 

Turning now to the magnitude of the effect, we first 
notice that the transition probabilities (54) increase 
first with increasing intensity of the primary radiation. 
This is in contrast to the Thomson-scattering cross 
section, which is always inhibited with increasing 
intensity of primary radiation. As discussed by Fried2 

the reason for this decrease is just the opening up of 
more scattering channels with increasing intensity, 
those channels being precisely the ones we investigated 
here. On the other hand, if a goes to zero the transition 
probabilities (54) also vanish, since a free electron 
cannot spontaneously emit radiation. Of course the limit 
a—0 in Eq. (54) is a mathematical limit, since the 
physical approximations which lead to Eq. (54) will 
break down long before a is zero. Assuming now for 
the electron velocity v a value of 2X108 cm/sec10 

numerical integration of Eq. (54) shows that for an 
infrared laser (coo= 1013 sec-1) the total transition 
probabilities are fairly large. Specificially we find a 
total transition probability of 108 sec -1 for the first 
few harmonics, assuming a=\ corresponding to a laser 
beam intensity of 4.1012 W/cm2. 
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